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Abstract—The paper revisits a simple beam model used by Chater et al. (1983, Proc. IUTAM Symp.
Collapse. Cambridge University Press) to examine the dynamics of propagating buckles on it. It
was found that, if a buckle is initiated at a constant pressure higher than the propagation pressure
of the model (Pp), the buckle accelerates and gradually reaches a constant velocity which depends
upon the pressure, while if it is initiated at Py, the buckle propagates at a velocity which depends
upon the initial imperfection. The causes for the difference are also investigated.

1. INTRODUCTION

Certain structures have a tendency to propagate a buckle once one is initiated. Perhaps the
most important example is the buckle propagation along a sea pipeline. When a pipe
undergoes an extra external pressure, the weakest section of the pipe may experience
collapse first to initiate a local buckle, then driven by the pressure, the buckle can propagate
along the pipe flattening it (Palmer and Martin, 1975). The lowest pressure which can
sustain the propagation in a quasi-static, steady-state is known as the propagation pressure
(Pp). It is especially significant since at any pressure below Pp, the buckle remains local,
while at any pressure above Pp, the buckle once initiated will run dynamically over the
whole length. Therefore predicting the propagation pressure has been a main subject for
discussion in the past two decades (Kyriakides and Babcock, 1981 ; Kyriakides and Arikan,
1983 ; Chater and Hutchinson, 1984 ; Kyriakides ez al., 1984 ; Wierzbicki and Bhat, 1986;
Jensen, 1988 ; Dyau and Kyriakides, 1993). It becomes known that, fundamental to develop-
ing a longitudinal propagation, is the N-like postbuckling path of the structures in cross-
sections. A complete, comprehensive review of the problem has been given by Kyriakides
(1993).

Considerable understanding has been reached regarding the mechanism of quasi-static
propagation. However, there were few works reported about the dynamics. Kyriakides and
Babcock (1979) had performed a series of dynamic experiments in a constant pressure
environment of P > Pp. They observed that after initiation the buckle accelerates and
quickly reaches a constant velocity that is a function of the pressure. However the function
fails to go through the origin as shown in Fig. 1 [from Kyriakides and Babcock (1979)].
The reason for this is not well understood up to date. Recently, a transient finite element
simulation has been presented (Song and Tassoulas, 1992), but unfortunately, the analysis
was limited to the steady-state value of the velocity. On the other hand, Chater ez al. (1983)
had proposed a simple beam model to elucidate some of the general features of buckle
propagation. The inertia effects were considered by using a dynamic, steady-state assump-
tion. In the present paper, we revisit the beam model but extend our attention from
the dynamic, steady-state to the whole, transient process of a buckling, including the
localization.
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Fig. 1. Propagation velocity vs pressure parameter {from Kyriakides and Babcock (1979)].

2. MODEL ANALYSIS

The model used by Chater et al. (1983) is an infinite linear beam resting on a nonlinear
elastic foundation according to

k(w) = ko[l —45 (%)+ 5.25 (%ﬂ )

where w is the lateral deflection. The beam is subjected to a uniform lateral load p as
depicted in Fig. 2. The restoring force per unit length of the foundation, f(w) = k(w)w, is
assumed to have a general “N” shape shown in Fig. 3. It is this property that renders the
model of some practical significance, especially for studying the longitudinal propagation
characteristics.

The dynamic equation governing the system is

0w o*w
— + EI— +k(w)w = p(0), 2
m T +EL— k(s = p() @

where EI is the flexural rigidity of the beam and m the mass of linear beam per unit length.

Fig. 2. The beam-foundation model used by Chater ez al. (1983).
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Fig. 3. Restoring force of the foundation vs deflection.

The boundary conditions are

ow w
X — 1 o0, ;3;=§=0 (3)
and the initial conditions are
w(x,0) = W* (4a)
ow
= (6,0 =0, (4b)

where W* is the initial deflection of the beam. In accordance with the constant pressure
conditions used in the dynamic experiments (Kyriakides and Babcock, 1979), we let

pO=P* (—o<t< +x0) &)

but assume the foundation is perfect until # = 0 and has the uniform deflection W* under
the action of P*. Once ¢ > 0, a weak spot (imperfection) at the vicinity of the origin on the
foundation is manufactured to initiate a buckle ;

k(w,x) = kq [1 —45 <%>+5.25 (%)2] [1—nexp (—A&2)], 6)

)

The parameters n and A are introduced to describe the weakness of the spot. With > 0,
the foundation is weakest near the origin and it develops its full strength for &2 > 1. In
the present paper two kinds of weakness are considered: (I)# = 0.8 and 1 = % ;(ID =07
and A = TIE Both are serious enough to initiate a buckle even at a pressure much lower than
P,

The infinite beam is approximated by a finite one with a span of 2L, L ~ 180(EI/ky)'/*,
and subdivided into 180 elements, so that eqns (2)—(5) can be solved by a finite element

method (details listed in the Appendix).

where

SAS 31:23-J
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Fig. 4. Propagation velocity vs time (weakness I).

It is seen from Fig. 3 that the displacement w/H = 0.15, corresponds to the peak of
the restoring force of the foundation. This indicates that once the deflection of the beam is
somewhere beyond 0.15H then the point is going into buckling. Therefore the horizontal
distance from this point to the origin of the foundation is defined as Ly in the present paper
to locate the transient position where a buckle front propagates.

For each time increment At = "' — 1", two successive fronts could be obtained from
computations: L' and L§. The mean velocity of propagation in At could be regarded as
the transient velocity at r*+'/?,

a+1 n
Li+ti L3

tn+l "

A+1/2 .

M

U

provided that the time interval At is sufficiently small.

3. VELOCITY OF PROPAGATION

The characteristics of the velocity of propagation on the model are illustrated by
numerical examples in which the external pressure P* is intentionally specified at three
different constant levels but closely around the propagation pressure: (1)
P* = 1.035P, > Pp; (2) P* = Pp; (3) P* = 0.980Pp < Pp. Although there is only a slight
difference for the given pressures for the same initial weakness (weakness I), it causes a
substantial difference in the velocity responses. Details will be described in the following
two sections.

3.1. Observations

It is seen from the computational resuits shown in Fig. 4 that the time history of the
velocity is generally divided into two periods. In the first period, no remarkable difference
is observed among the curves and actually buckles do not propagate but have to complete
initial localization. Although the velocities have lost their general meanings in this period,
they reach an almost equal value Uy, finally. It will be known that Uy is an initial velocity
of propagation. Once time comes into the second period, however, the curves separate from
each other.

(1) P* > P,. The buckle initiated in this case accelerates from Uy, and gradually tends
towards a constant velocity U, U > U,. The small waves along the curves in Fig. 4 are due
to the computational errors, they could be eliminated by a finer discretization of the beam.



On the velocity of buckle propagation 3319

*
1.2 P -1.0351",

*
P"=0.980P,

0 T L4 T T T T T

0 30 60 90 120 150 180 210 240

L

m 2
t{ —
(kO)

Fig. 5. Propagation velocity vs time (weakness II).

(2) P* = Pyp. The buckle propagates keeping the initial velocity U,.

(3) P* < Py. The buckle decelerates from U, and, as a result, it cannot propagate over
the full length of the beam. What was observed above is examined by another numerical
example (weakness II, see Fig. 5).

Comparing Fig. 4 with Fig. 5leads to:

(4) If P* > Py, then no matter how different the initial imperfection may be, an equal
external pressure brings about the same steady velocity U (see Fig. 6), which indicates that
the velocity U is only a function of the pressure.

(5) If P* = Py, then the velocity depends upon the imperfection ; for instance, different
weaknesses may induce different velocities (see Fig. 7). These conclusions are supported by
other examples which are not shown in the paper.

It becomes clear that for the beam model considered, if a buckle is initiated at a
pressure higher than Py, it finally propagates at a constant velocity which depends upon

depends upon the initial imperfection.
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Fig. 6. U only depends upon the pressure (P* = 1.035Pp).
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Fig. 7. The propagation velocity depends upon the imperfection (P* = Pp).

3.2. Explanations

The cause that makes the velocity response vary in a very large variety at the propa-
gation pressure will be discussed in the context of conservation of energy.

(1) P* > Pp. The work done by the external pressure in this case is always consumed
in two parts. The first part is turned into the elastic potential energy of the foundation as
the beam collapses. The energy absorbed per unit length of the foundation E;, is determined
by the initial deflection W, and the final deflection W3. Therefore there is no essential
difference between Ep at a dynamic state and that at a quasi-static state if the pressure only
varies in a minor range around P; (see Fig. 3). The second part [~ (P* — Pp)(Ws— W,)] is
consumed for vibrating the beam at the final equilibrium position W5. Since the buckled
part of the beam (may be imagined as *“‘mass blocks™) and the elastic foundation below
(“springs”) construct a series of “oscillators™ excited in sequence, the deflection of the
buckled beam is no longer a constant, i.e. dw/0x 0. This issue was ignored in the dynamic,
steady-state analysis given by Chater et al. (1983). As the buckle propagates, more and
more parts of the beam are accelerated. Once the rate of the second part of external work
becomes equal to the rate of the kinetic energy which goes into the buckled beam, the
propagation reaches a steady-state.

(2) P* = Pp. The increment of the external work in this case is just right for increasing
the potential energy of the foundation when a buckle propagates. No extra work could be
obtained from the pressure to excite those “oscillators”. Therefore the defiection of the
beam falls at a constant lever behind the transition zone, i.e. dw/dx = 0. Only in this case
the dynamic, steady-state assumption used by Chater et al. (1983) is valid. The total kinetic
energy of the beam does not change either, it maintains its initial value as the buckle
propagates. The initial kinetic energy is limited by the localization ; its maximum, or the
upper bound for U,, can be estimated by using a weaker spot.

(3) P* < Pp. The input work in this case is not enough for increasing the potential
energy of the foundation. Thus, the initial kinetic energy is gradually used up to make up
for the potential energy required to keep the buckle propagating, which results in the
deceleration of the buckle. In other words, the buckle remains local.

4. DISCUSSIONS

What was observed resembles the dynamic behavior of the propagating buckles in
submarine pipelines described at the beginning of the paper. However, the model examined
in the present paper is a non-dissipative one, and the results obtained should be restricted
to the model itself.
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In submarine pipelines there are no ‘“oscillators” to store the kinetic energy when a
buckle propagates. Instead, the kinetic energy of the pipe is dissipated as the opposite walls
impact each other. Once the rate of the kinetic energy dissipated reaches the rate of work
supplied by the pressure, the buckle propagation comes to a steady state [see Kyriakides
and Babcock (1979)]. Therefore the dynamic buckle propagation in elastic-plastic pipes is
of a dissipative problem. A full understanding of this problem will be the next challenge.
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APPENDIX
Equation (2) is discretized by the finite element method as
MW + KW = p(n)P, (Al)
where W and W are nodal displacement and acceleration vectors, respectively. Both of them are functions of time.
M denotes the mass matrix of linear beam and K the secant stiffness matrix for the beam—foundation system

defined by Ks = K+ KG, in which K indicates the stiffness matrix for the linear beam, and Ky the secant stiffness
matrix for the nonlinear elastic foundation. For each beam element, [K], .4 can be written as follows:

[&hzfumﬂmwmuﬂm
(]

= Cof+ Ci Bu Wi+ Cs Blrn W, W, (A2)
with

;
%=fwnmmw
0
'
Bl = J afZIN;N; N, dx
Q
]
Bimn = f a(Z)N; NN, N, dz
o

a(%)y = l-»r;exp[-—& %(x5+f)2]

4.5 5.25

Co=ke; C = —‘I‘}“kﬁ & ="f'1';’k0’ (A3)
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in which / is the length of the beam element, N,(x) is Hermite’s shape function and xg is the distance from the
origin to the left node of each beam element. The Einstein summation convention is adopted for i, /, k, L, m,n = 1,

2...4.
To integrate eqn (A1) with time, the Newmark constant acceleration method is employed as

witl = w”+-;'At(v”*' +u")
o = 0" LAKE ! +a), (A4)

where v and a are velocity and acceleration of the beam, respectively. Combining the above two equations leads
to

witl = W"-I—%(At)za"*'l

W= W+ AR+ HAD T (A5)

Such a relationship brings eqn (A1) into a new form

(MDY KYW™ = p™+ P+ MPYNW’, (A6)
where
DYN __ 4
ay*

For each time increment, the two terms on the right hand side of eqn (A6) are known, so the unknown
variable W™*! on the left hand side can be determined by the Newton-Raphson Method.



